
RS485 TO POE ETH (B) MQTT And
JSON User Manual
From Waveshare Wiki
Jump to: navigation, search

(/wiki/File:RS485_TO_POE_ETH01.jpg)

Overview
MQTT and JSON can be used alone or together. JSON supports Modbusconvert RTU
format to JSON format.

Main features:

1. Use the MQTT-based protocol to establish a connection with the server, and use the

form of subscription to publish data communication.

2. Support independent design and automatic collection of Modbus RTU registers.

3. Support the conversion of specific Modbus register content into JSON format and send it

regularly and actively.

4. Support adding device ID, time, and any string in JSON format.

5. Support embeddings in JSON format.

6. Support NTP protocol, and get the time automatically.

7. Support unsigned data and signed data, support decimal point representation, and

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH01.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH01.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH01.jpg


support 4-byte length data.

8. All configurations can be completed in interface configuration, and the user's

independent configuration does not need to be customized.

JSON Examples

MODBUS RTU To JSON

Modbus RTU to JSON can realize an automatic collection of Modbus RTU tables, and is
automatically uploaded to the cloud server following the JSON format.

Here we explain this usage with a specific case.

MODBUS Table

Suppose there is a Modbus table with a function code of 3 and an address of 1. Its
register addresses and parameter names are as follows. Where the byte length is 4, it
means that 2 registers need to be read continuously.

Resister Address Parameter Byte Length Note

0 Current total active power 4 Unsigned, keep 2 decimal places

97 Phase A voltage 2

Unsigned, keep 1 decimal place98 Phase B voltage 2

99 Phase C voltage 2

100 Phase A current 2

Unsigned, keep 2 decimal place
101 Phase B current 2

102 Phase C current 2

119 Frequency 2

356 Phase A active power 4

Unsigned, keep 3 decimal place
358 Pahse B active power 4

360 Phase C active power 4

362 Total active power 4

The so-called signed means that the highest bit of 2 bytes or 4 bytes is the sign bit, for
example, 0xFFFF will be recognized as -1. Keeping 2 decimal places means that after the
data is converted as an integer, the decimal point moves from the rightmost to the left 2
digits.

Device Config

We configure the device as a client.

Use SSCOM to monitor a TCP server on port 1883 of the local computer.



(/wiki/File:RS485_TO_POE_ETH03.jpg)

Configure the device via Vircom:

(/wiki/File:RS485_TO_POE_ETH04.jpg)

Click Modify configuration to connect the device to the SocketDlgTest tool. Enter device
editing again dialog box. Click the "Firmware and Configuration" button.

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH03.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH03.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH03.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH04.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH04.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH04.jpg


(/wiki/File:RS485_TO_POE_ETH05.jpg)

First click "Web Directory Download" to enter the configuration download mode. Then
select a new empty directory, such as the MQTTHTTPD directory. To prevent the previous
design from remaining, please click the "Remove All" button first, so that the previous
design content can be removed. The design file will be saved in this directory and can be
downloaded to the device by clicking the "Download" button later.

Click the "JSON Configuration" button.

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH05.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH05.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH05.jpg


(/wiki/File:RS485_TO_POE_ETH06.jpg)

The parameters here are as follows:

1. Period of Send to Server: The default JSON data is sent to the server every time. The

server is the destination IP set in the device configuration interface just now, and the unit is

milliseconds.

2. Select the cloud platform to access: provide functions such as connecting massive

devices to the cloud, bidirectional message communication between devices and the cloud,

batch device management, remote control, and monitoring, OTA upgrades, device linkage

rules, etc., and can flexible transfer device data to Huawei Other cloud services.

3. The Uplayer Protocol of JSON: three options (NONE/MQTT, HTTP POST, HTTP GET),

choose NONE/MQTT, and do not need to set the domain name, address, and variable name

below, choose the other two to fill in according to the actual use.

4. GET/POST URL: users can choose whether to add or not, which is mainly used to

distinguish devices.

5. Add prefix to upload data:This is mainly used to judge a cycle, and this function can be

used according to requirements.

6. Add or remove Modbus registers: After clicking, you can design the Modbus registers,

and you can also view the current content. Delete means deleting all the Modbus registers

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH06.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH06.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH06.jpg


designed, which is convenient for restarting the design.

7. Save setting: After the design is completed, only click this button to save the data to the

download directory just now, and then download it to the device.

8. Export/import EXCELL config file: easy to export and import JSON configuration.

Now click on the "Add/View" button. For the first row of the previous Modbus table:

Register Address Parameter Byte Length Note

0 Current total power 4 Unsigned, keep 2 decimal places

The corresponding configuration is as follows:

(/wiki/File:RS485_TO_POE_ETH07.jpg)

The parameters here are described as follows:

1. The first register: 1 here means that the current design interface is to configure the first

register.

2. It has been added: If ticking indicates that it has been added, a tick will appear when

viewing the configured information.

3. JSON node data: select object data and array data according to requirements.

4. Corresponding JSON keyword: corresponding to the keyword in the uploaded JSON.

For example "CurrentW": 232.12.

5. Slave address: Modbus table address.

6. Modbus function code: currently supports 03 and 04 function codes.

7. Register address: the corresponding 0 here.

8. Data length: here corresponds to 4 bytes.

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH07.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH07.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH07.jpg


9. Decimal point places: 2 digits are reserved here.

10. Enable shift and scale.

11. Data format: here corresponds to an unsigned integer.

12. Add unit name to rear:: according to the data, set the corresponding unit.

13. Add question to data: Yes tick, no tick.

14. Serial port polling time: here is set to 100ms. It refers to the polling interval between

this register and the next register, not the polling interval of this instruction.

15 and 16. Function selection, choose according to your needs.

17. Enable next: click to enter the setting of the next register.

18. Del and enter:delete the one that has been added now, and configure the next register.

19. Save and exit: After completing the design, click "Save JSON Configuration" on the

previous interface.

20. Cancel and exit: cancel all current designs, if you want to view the design content, you

can click this button to exit.

Click the "Enable next" button here to continue designing other registers in the Modbus
table. After designing all the registers in the table, click "Finish Design", and then click
"Save and exit" to exit. Then click the "Download button" on the "Download web" page.

(/wiki/File:RS485_TO_POE_ETH08.jpg)

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH08.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH08.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH08.jpg


Then click "OK" and the device will restart automatically. If it does not restart, please
restart manually.

Create MODBUS Analog Meter

Here, Modbus Slave is used to analog a table (a serial device is required to simulate
Modbus devices, and I use USB TO RS232/485/TTL (https://www.waveshare.com/usb-to-r
s232-485-ttl.htm) here).

(/wiki/File:RS485_TO_POE_ETH018.jpg)

The test results show that the instrument simulated by the Modbus slave tool can be
collected by the gateway. At the same time, it can be sent to the server software of the
SSCOM simulation according to the JSON format.

JSON To MODBUS RTU
JSON to Modbus RTU supports 05/06/16 commands. If you need to use the 15
commands to set multiple coils, please use the 05 command multiple times.

According to the length of the number of bytes, the system will automatically select 06
or 16 commands to send. Here is an example of setting the coil and setting the register
respectively.

If you receive {alert: "on" } JSON data, you need to use the 05 commands to set the
station address 02, the coil starting from register 03. Then click "Send JSON" in the JSON
to Modbus interface.

https://www.waveshare.com/usb-to-rs232-485-ttl.htm
https://www.waveshare.com/usb-to-rs232-485-ttl.htm
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH018.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH018.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH018.jpg


(/wiki/File:RS485_TO_POE_ETH019.jpg)

The configuration interface is as follows: Note that the alert: "on here needs to be
written.

(/wiki/File:RS485_TO_POE_ETH020.jpg)

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH019.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH019.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH019.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH020.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH020.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH020.jpg


Click "Next" to add another delivery conversion, otherwise click "Save all and exit". After
returning to the main interface, click "Save JSON Settings", and then click "Back". Then
pay attention to clicking "Download" on the download interface. This completes the
configuration.

If {power: "12345"} is sent now, the value of power 12345 needs to be set to station
address 2, register 3. Then set as follows:

(/wiki/File:RS485_TO_POE_ETH021.jpg)

Note that you only need to enter power:" for the keyword here, and you don't need to
enter the following 12345, because this value changes, but you need to enter a colon. If
there are quotation marks in the delivered data, you also need to enter quotation marks.

MQTT

Device Config

First search for the device, then click "Config":

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH021.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH021.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH021.jpg


(/wiki/File:RS485_TO_POE_ETH025.jpg)

Click "Firmware and Configuration" to pop up the configuration download and design
dialog box:

(/wiki/File:RS485_TO_POE_ETH026.jpg)

Here select "Webpage Directory Download", then select an empty directory, such as the
MQTTHTTPD directory, and then click MQTT Configuration.

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH025.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH025.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH025.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH026.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH026.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH026.jpg


(/wiki/File:RS485_TO_POE_ETH027.jpg)

The configuration instructions here are as follows:

1. MQTT server IP: fill in here the IP of the MQTT server, up to 30 characters.

2. Username: It is the username of the MQTT server.

3. Password: It is the login password of this user.

4. MQTT ID: It is the client ID of MQTT.

5. Subscription topic: It is the topic that this device subscribes to. When other devices

publish this topic, the server will send it to this device. If you are just publishing, generally

you do not need to fill in this field.

6. Publish topic: The topic of the data sent to the server when the device converts the

serial port to MQTT.

7. Advanced: used to configure advanced parameters.

8. Save: Click this button to save the design, and then click the "Download button" in the

web download directory to download.

Now click "MQTT Advanced Settings" (generally no need to configure advanced
parameters):

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH027.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH027.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH027.jpg


(/wiki/File:RS485_TO_POE_ETH028.jpg)

Note:

1. Protocol version: 3.1.1 is the current popular version, if you want to choose the 3.1

version, you can select it here.

2. Keep alive: MQTT heartbeat time, 10 sec at least, 60 sec by default.

3. Clean session: whether the server cleans the session after the client is offline.

4. Enable will: whether to enable the will.

5. Last-will topic: the topic of the last will.

6. Last-will message: the message of the last will.

7. Last-will retain: whether the server sends the last-will message when the client is offline.

8. Will QOS: the quality of the will.

9. Subscript QOS: the quality of the subscription. Sometimes you need to set it to 0 so as

to avoid an offline state when it reloads.

10. Publish QOS: the quality of the publishing message from the client. Sometimes you

need to set it to 0 so as to avoid an offline state when it reloads.

11. Save publish: whether to save the last message in the server. (if there is a new client

subscription, it will send it to the client.)

We do not modify any advanced parameters here, just click: "Save MQTT Config" and
then click "Download".

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH028.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH028.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH028.jpg


(/wiki/File:RS485_TO_POE_ETH029.jpg)

Click OK after downloading, then it will return to the device management dialog. You can
see that the device target IP, work mode, and target port have been automatically
modified as MQTT settings.

(/wiki/File:RS485_TO_POE_ETH030.jpg)

If it is not modified automatically, you need to set the target IP, work mode, and target
port in the device settings. Then click "Modify Setting".

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH029.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH029.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH029.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH030.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH030.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH030.jpg


(/wiki/File:RS485_TO_POE_ETH031.jpg)

Data Transfer Test
The LINK LED of the device will be on (the blue light in the middle) after connecting,
which means the device has been connected to the MQTT server normally.

Connect the UART device and RS485 TO POE ETH (B), and then open SSCOM.

(/wiki/File:RS485_TO_POE_ETH032.jpg)

Open the serial port with the same baud rate as the device, and send the data "dev
send", and then see the returned data "dev send" in the receiving window. This is
because we publish the dev send message to the MQTT server on the MQTT topic. But at

https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH031.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH031.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH031.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH032.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH032.jpg
https://www.waveshare.com/wiki/File:RS485_TO_POE_ETH032.jpg


the same time, our device also subscribes to the MQTT topic, so the server will
immediately send us a subscription message, and the content of the subscription
message is dev sent. This information is sent and downloaded as the payload of MQTT,
and output from the serial port through transparent transmission. If other devices send
information, this device can also receive data.

Generally speaking, users can directly transmit serial port commands (such as Modbus
RTU) directly to the MQTT server. In addition, the JSON function can also be used, which
adopts the form of automatic Modbus RTU format collection and regular JSON format
upload. In addition, you can also find Waveshare Electronics to customize some non-
standard instruments and host computer protocol formats.

MQTT+JSON To MODBUS RTU
Combining the above JSON and MQTT can achieve the following functions:

1. The MQTT-based protocol is used to establish a connection with the server, and data
communication is performed in the form of subscription and publication.

2. Support independent design and automatic collection of Modbus RTU registers.

3. Support the conversion of specific Modbus register contents into JSON format for
regular and active uploading.

4. Support adding device ID in JSON format to facilitate cloud identification of devices.

If you need MQTT + JSON to Modbus RTU function, you can design MQTT and JSON
separately, in no particular order. Don’t click the "Clear Design" button after designing
one type, and click the "Download" button to download the content to the device after
designing both. Generally, you can manually restart the device after downloading it to
load the settings.

Show results:

MQTT webpage (http://www.emqx.io/online-mqtt-client#/recent_connections) debug:

(/wiki/File:485POE_JSON_MQTT_33.jpg)

 

(/wiki/File:485POE_JSON_MQTT_34.jpg)

 

(/wiki/File:485POE_JSON_MQTT_35.jpg

Figure MQTT web configuration

JSON setting

http://www.emqx.io/online-mqtt-client#/recent_connections
https://www.waveshare.com/wiki/File:485POE_JSON_MQTT_33.jpg
https://www.waveshare.com/wiki/File:485POE_JSON_MQTT_33.jpg
https://www.waveshare.com/wiki/File:485POE_JSON_MQTT_33.jpg
https://www.waveshare.com/wiki/File:485POE_JSON_MQTT_34.jpg
https://www.waveshare.com/wiki/File:485POE_JSON_MQTT_34.jpg
https://www.waveshare.com/wiki/File:485POE_JSON_MQTT_34.jpg
https://www.waveshare.com/wiki/File:485POE_JSON_MQTT_35.jpg
https://www.waveshare.com/wiki/File:485POE_JSON_MQTT_35.jpg
https://www.waveshare.com/wiki/File:485POE_JSON_MQTT_35.jpg


(/wiki/File:JSON_setting01.jpg)

MODBUS analog table setting

https://www.waveshare.com/wiki/File:JSON_setting01.jpg
https://www.waveshare.com/wiki/File:JSON_setting01.jpg
https://www.waveshare.com/wiki/File:JSON_setting01.jpg


 (/wiki/File:JSON_setting02.jpg)

Communication effect of MQTT + JSON to Modbus RTU

(/wiki/File:JSON_setting03.jpg)

HTTP POST/GET+JSON
In addition to MQTT, the host computer protocol can also choose HTTP protocol, and
upload data through POST and GET instructions. The following takes the POST command
as an example to introduce.

https://www.waveshare.com/wiki/File:JSON_setting02.jpg
https://www.waveshare.com/wiki/File:JSON_setting02.jpg
https://www.waveshare.com/wiki/File:JSON_setting03.jpg
https://www.waveshare.com/wiki/File:JSON_setting03.jpg
https://www.waveshare.com/wiki/File:JSON_setting03.jpg


(/wiki/File:POST%2BJSON01.jpg)

The Vircom version adds two options in the JSON to Modbus RTU setting, as shown in
the figure:

1. Upper-layer protocol of JSON: If it is protocol-free or MQTT protocol, please select the
first item: "NONE/MQTT". If it is "HTTP POST", please select the second item "HTTP
POST", if it is "HTTP GET", please select the third item "HTTP GET".

1. POST/GET URL: When selecting POST or GET, you must fill in the URL. For example, if the
URL is http://s.a.com/wri/v2 (http://s.a.com/wri/v2), remove the previous "http://" and
directly fill in "s.a.com/wri/v2".

Other JSON structure design methods are the same as those introduced before, and
when you click the "Save JSON Settings" button later, if "POST/GET" is selected, HTTP
header format information will be added in front of the JSON data to support the HTTP
transmission protocol.

This "POST/GET" design method is simple and practical, and can easily and quickly
transmit instrument data such as Modbus RTU to the server in the form of "HTTP
POST/GET + JSON".

Retrieved from "https://www.waveshare.com/w/index.php?
title=RS485_TO_POE_ETH_(B)_MQTT_And_JSON_User_Manual&oldid=54065
(https://www.waveshare.com/w/index.php?
title=RS485_TO_POE_ETH_(B)_MQTT_And_JSON_User_Manual&oldid=54065)"

https://www.waveshare.com/wiki/File:POST%2BJSON01.jpg
https://www.waveshare.com/wiki/File:POST%2BJSON01.jpg
https://www.waveshare.com/wiki/File:POST%2BJSON01.jpg
http://s.a.com/wri/v2
https://www.waveshare.com/w/index.php?title=RS485_TO_POE_ETH_(B)_MQTT_And_JSON_User_Manual&oldid=54065
https://www.waveshare.com/w/index.php?title=RS485_TO_POE_ETH_(B)_MQTT_And_JSON_User_Manual&oldid=54065
https://www.waveshare.com/w/index.php?title=RS485_TO_POE_ETH_(B)_MQTT_And_JSON_User_Manual&oldid=54065
https://www.waveshare.com/w/index.php?title=RS485_TO_POE_ETH_(B)_MQTT_And_JSON_User_Manual&oldid=54065

